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A symmetrical semi-implicit (SSI) difference scheme is formulated for the heat conduction 
equation. The scheme is easy to code, fast and quite accurate. The advantage of the scheme 
appears mainly when used for large, complicated, multidimensional grids and for nonlinear 
problems. 0 1985 Academic Press, Inc. 

1. INTR00ucTr0~ 

We use equations similar to the heat conduction equation to calulate heat 
transfer, radiation transfer and hydrostatical equilibrium in our stellar evolution 
programs. We tried various numerical schemes and found that the most convenient 
scheme for complicated calculations (nonlinear, multidimensional calculations) is a 
symmetrical semi-implicit (SSI) scheme. The (SSI) scheme is easy to code, very 
economical in computer time and in computer fast memory, and at the same time it 
is unconditionally stable and quite accurate. 

2. FINITE SPATIAL DIFFERENCES 

The heat conduction equation reads 

aa f) ar + div j( x, t ) = 0, 

j= -D(t) grad r. Here E(X, t) is the energy density distribution, z is the tem- 
perature, D is the heat conduction coefficient, and j is the current density. A 
relation, often nonlinear, E(Z) is assumed to be given. 

Integrating this equation over any finite volume element, we obtain an equation 
of the form 

de, 
dt = -Ji(ei, ekr, ek,, ,... ), Ji=C Ji/c, (2) 

k 
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where k runs over all neighbors of cell i. Here, ei is the energy of the volume 
element i and Jj is the heat flux leaving that element. The neighbors cells are 
enumerated by k’, k”,..., so that Jik is the heat flux flowing from cell i to neighbor 
cell k. Obviously one has, 

J, = -Jki. (2’) 

There exist many schemes for writing the space-difference equation (2). In the one 
dimensional case, Jik depends usually only on the energy ei and the energy of the 
neighbor ek. In multidimensional cases, the flux Jik depends on energies of several 
neighbors. We do not discuss here any specific space-difference scheme. We assume 
that the heat conduction equation for any grid has been reduced to the form (2) by 
differencing methods or by finite element methods. 

3. FINITE TIME DIFFERENCES 

The simplest difference scheme for Eq. (2) is obviously the explicit scheme 

e, - E, 
-= -J(ei, ek,, ekss ,... ), 

At 

where e, is the value of the energy at the end of a time step and Ci is the value at the 
beginning of a time step.’ As is well known, this scheme is only conditional stable. 
In most practical cases the limitation on the time step size is so severe that this 
scheme becomes impractical. 

An unconditional stable scheme (at least for the linear case) is the implicit 
scheme 

e,-2, 
-= -Ji(ei, ekp, ekrr ,... ). 

At 

In the nonlinear multidimensional case, this scheme is very inconvenient and 
expensive as one has to solve many coupled nonlinear equations. 

An alternative unconditionally stable scheme is a semi-implicit scheme 

e, - Ci 
-= -J,(e,, Fk,, t?,,, ,... ). 

At 

This scheme has the advantage that we need to solve only one (nonlinear) equation 
with one unknown (e,) at a time. The difficulty with this scheme is that it is not 
symmetrical in the variables ei, ek because in general Jik # -Jki, in contradiction 
with Eq. (2’). This means that if we use Eq. (5) in a straightforward way, the total 

’ The value of any variable from the end of the previous time step is designated by an overbar (J,,, e,, 
A&...). 
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energy in the domain is not conserved. In some cases, one can use a semi-implicit 
scheme and still have energy conservation by modifying the scheme. Consider the 
one-dimensional case and define J,+ as follows [l, 21: 

J*= -Jipl,j(er-ly ei)+Jj,i+l(ei, Fi+l). (6) 

As ei+l does not appear in (6), we can solve the system of equations 

e,--ei 
-= -J,?‘, 

At 
i = l,..., N (7) 

in the order i= 1, 2,..., N. This works very well, provided the fluxes at the end 
points Jo,l y J,,+ 1 depend only on the energies e, and e,,,, respectively. In the case 
of a boundary condition J,,, 1 = , 0 the last equation is explicit and the scheme is 
only conditionally stable. If we use Eq. (7) for all time steps, we introduce a left- 
right asymmetry and a truncation error of the order of At/Ax2. The remedy, if the 
boundary conditions allow it, is to use the scheme (7) and its mirror-reflection on 
alternating time steps. Not only is the left-right asymmetry removed, but also the 
accuracy is improved and the truncation error becomes of the order of (At/Ax)2. 

The implementation of using different directions of calculations in alternating 
steps is in many cases exceedingly inconvenient. For example, take the case of a 
general grid of finite elements in the plane which has no rectangular order. Thus, 
Eq. (7) can be generalized and the semi-implicit method can be formulated for mul- 
tidimensional grids but usually the asymmetry inherent in the method can not be 
eliminated. 

We propose here a new SSI scheme which is symmetrical and unconditional 
stable. 

First, we solve Eq. (5) for all cells. By doing this, an amount of energy 

ikik= [Jik(ei, Fk) + Jki(ek, Fi)] ‘At (8) 

is lost “at the interface” between cell (i) and cell (k). 
This amount of energy must be replenished to the system. We chose to add 6eik 

to cells (i) and (k) at the next time step dividing it between the two cells in propor- 
tion to their heat capacity. Thus, the equation to be solved for each cell reads as 

e,-Ci 
- = -J,(ei, Fkp, Fkjs ,...) + qi, 

At 

(9) 

fik +fki= 1; 

fik is the fraction of the heat capacity of cell (i) to the sum of heat capacities of cells 
(i) and (k). Usually one can put fik = 1 without loss of accuracy. We can see that (9) 
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is a three-steps difference scheme as values from three different time steps appears in 
the difference equation. In practice, one has to save only the residuals qi when pass- 
ing from one time step to the next one. It is clear that the solution of (9) is indepen- 
dent of the order of calculations so that no numerical asymmetry enters into the 
solution. 

Before proceeding with a closer analysis of the SSI method a few remarks about 
our experience with the various methods when used in stellar-evolution 
calculations. In that application, both E(Z) and D(r) are complicated nonlinear 
functions. The time step in the implicit scheme is limited in practice by the non- 
linear nature of the problem. The number of iterations needed to solve the coupled 
equations increases fast with the time step. It turned out that accuracy was never a 
factor in determining the time step. The experience with semi-implicit methods is 
essentially similar though it is much easier to solve a single (nonlinear) equation. It 
does not pay to use a big time step because (also in this case) the amount of work 
increases with the time step. In general, economy dictates a bigger time step for the 
semi-implicit schemes than for the completely implicit scheme. Still an “economic 
step” was usually enough to obtain excellent accuracy. In some cases, when we tried 
to use a big time step an anoying ripple developed; this was not ordinary instability 
in the sense that it did not grow with time. 

4. STABILITY AND CONSISTENCY OF THE SSI SCHEME 

To discuss the stability and consistency of our difference scheme we shall use the 
one-dimensional case with a fixed Ax, D constant, and linear relation Z(E) = s/C. 

Using upper index for enumerating time steps, one gets 

Jj(ej" + ', e;, , , eT_ 1 ) = - (JTT-‘, + JJy-ll ) 

=-- 
i 

-~(~~+,-~~“,+(r;“-r:-~)}, 

qj=O.5(JIj+l + JT+ l,j) + O.S(JJ+ I+ JT- l,j). 
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Using Eq. (9) and assuming that At = di, one gets after some algebra, 

(10) 

Inserting into (10) a solution of the form 

(11) 

we obtain between p and q the relation 

or 

1-l= -a 21--(1+3cosq)+i(l+cosq) (12) 

where 1= epAr; a = De At/C* Ax2. 
To prove the stability of the difference scheme we have to show that IL1 < 1 for 

any q, i.e., for any wave length Ax/q. The quadratic equation for 1 can be rewritten 
in the form 

A2 - (3yc + 1 - 27) A + yc = 0, (13) 

where c = cos2 q and y = 2a/(l+ 2a) (0 dy, cd 1). Denote b = 3yc + 1 - 27 and 
d = b2 - 4yc. We can look at three cases: 

Case a. d< 0. 

Than the two roots of (13) are complex conjugates and we have 

lA112= 11,12=4A2=yc< 1. 

Case b. da0 and b<O, yc>O. 

Since d 6 b2 and b > -1 for all y and c, we have 

0 b A2 2 A1 3 (b - d1’2)/2 > b > -1. 

Case c. d>O and b>O, yc>O. 

581/58/l-5 
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Then we have the inequality 

d = (3yc + 1 - 2~)’ - 4yc d (3yc + 1 - 27~)~ - 4yc 

=(1-yc)‘, 

so that 

0. ~I,<~2~~(3yc+1-2y+1-yc)=l+yc-y~1. 

This complete the proof. 
To check the consistency of the difference scheme we calculate the truncation 

error. Assume t(x, t) to be a solution of &/at - (D/C) a2z/a2x = 0, and substitute 
the Taylor expansion of z(x, t) into (10). The result is 

= O[At] + O[Ax’] + o[(At/Ax)2]. 

Consistency therefore requires that At/Ax + 0 as Ax and At tend to zero. 
Theoretically the appearance of a term of order (At/Ax)* in the truncation error is a 
severe disadvantage of the scheme; for any given Ax the time step must be kept suf- 
ficiently small to maintain accuracy. 

However, as mentioned above, there are practical reasons to keep the time step 
small enough. The “economic” time step for the implicit scheme, in which the trun- 
cation error does not contain a term of order (At/Ax)*, is usually of the same size as 
the time step of the SSI scheme and even smaller. 

5. NUMERICAL EXAMPLE 

The one-dimensional difference scheme was tested by simulating the diffusion 
equation (see [2, p. 2011) 

g=-$ (2). 

The exact solution is given by an implicit equation 

5/4(u-1)4+20/3(u-1)3+15(u-1)2+20(u-1)+51n(u-1) 

=u(u.t-x+x()), 

(14) 

where u and x0 are arbitrary constants. 
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FIG. 1. Exact solution (-) versus numerical SSI solution ( l ) at equal time intervals; s1 =O.l, 
E2 = 0.01. 

The numerical simulation has been performed by imposing the exact flux on the 
left boundary, x=0, and the exact solution (15) on the right boundary, x = L. 
Stability is proved for time steps up to steps that are 200 times bigger than the local 
maximal explicit time step (Fig. 3). Accuracy has been reached by limiting the time 
step according to two restrictions: 

(1) le-WI GE,, 

(2) M/l4 G b 
where e, c?, and q are defined by Eq. (9). 

In Fig. 1, one can see that the numerical solution follows the exact solution 
almost accurately for E, = 0.1 and e2 = 0.01. The two solutions are still in good 
agreement for s1 = 0.1 and s2 = 0.08 (Fig, 2). Accuracy is lost only for E, = s2 = 0.2 
(Fig. 3). 

In the first case (Q = O.Ol), the size of the time step is on the average about 50 
times greater than the maximal time step for which an explicit scheme is stable, 
whereas the computational time per step is almost the same. There is no need to say 
that for this one-dimensional test case an implicit scheme is very accurate and 
economic. The great advantage of the SSI scheme on an implicit scheme is seen in 
the two-dimensional case. For a grid with N-nodes and band width of size n, the 

FIG. 2. Exact solution (-) versus numerical SSI solution (* ) at equal time intervals; Ed =O.l, 
62 = 0.08. 
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FIG. 3. Exact solution (-) versus numerical SSI solution (a ) at equal time intervals; E, =0.2, 
E2 = 0.2. 

cost of matrix factorization is of the order of N x n2. Iterative procedures may save 
some computational time but still the asymptotic cost grows like N x n*. Thus, 
implicit schemes may be very expensive for problems with large grids due to the fac- 
tor of n*. On the other hand using the SSI scheme one can compute the solution 
with quite big time steps whereas the cost grows only linearly with N. 

6. SUMMARY 

The SSI scheme is an efficient way to perform the time differencing in com- 
plicated large problems of heat conduction. It is unconditionally stable (in the 
linear case) and avoids the difficulties of large system of equations which arise by 
the fully implicit methods. The scheme may be used in any grid of cells and in any 
spatial difference method. 
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